Variable Ordering for Bayesian Networks Learning from Data
نویسندگان
چکیده
Classification is an important task in data mining processes. In this work, the χ test is used to define the order of the variables of a dataset to be used in Bayesian classification tasks. Two Bayesian classifiers are used to verify the influence of the variables ordering in the classification rate. The first one is based on the K2 algorithm which has strong dependency upon the initial order of the variables, and the second one is the algorithm used in BNPC software which is based on the conditional independence (CI) principle and doesn’t depend on an initial variables order. Four datasets (from UCI repository) are classified with and without the defined order and the results are compared.
منابع مشابه
Learning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis
‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملThe modeling of body's immune system using Bayesian Networks
In this paper, the urinary infection, that is a common symptom of the decline of the immune system, is discussed based on the well-known algorithms in machine learning, such as Bayesian networks in both Markov and tree structures. A large scale sampling has been executed to evaluate the performance of Bayesian network algorithm. A number of 4052 samples wereobtained from the database of the Tak...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملBayes-N: An Algorithm for Learning Bayesian Networks from Data Using Local Measures of Information Gain Applied to Classification Problems
Bayes-N is an algorithm for Bayesian network learning from data based on local measures of information gain, applied to problems in which there is a given dependent or class variable and a set of independent or explanatory variables from which we want to predict the class variable on new cases. Given this setting, Bayes-N induces an ancestral ordering of all the variables generating a directed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003